A Unified View-Graph Selection Framework for Structure from Motion
نویسندگان
چکیده
View-graph is an essential input to large-scale structure from motion (SfM) pipelines. Accuracy and efficiency of large-scale SfM is crucially dependent on the input viewgraph. Inconsistent or inaccurate edges can lead to inferior or wrong reconstruction. Most SfM methods remove ‘undesirable’ images and pairs using several, fixed heuristic criteria, and propose tailor-made solutions to achieve specific reconstruction objectives such as efficiency, accuracy, or disambiguation. In contrast to these disparate solutions, we propose a single optimization framework that can be used to achieve these different reconstruction objectives with task-specific cost modeling. We also construct a very efficient network-flow based formulation for its approximate solution. The abstraction brought on by this selection mechanism separates the challenges specific to datasets and reconstruction objectives from the standard SfM pipeline and improves its generalization. This paper demonstrates the application of the proposed view-graph framework with standard SfM pipeline for two particular use-cases, (i) accurate and ghost-free reconstructions of highly ambiguous datasets using costs based on disambiguation priors, and (ii) accurate and efficient reconstruction of large-scale Internet datasets using costs based on commonly used priors.
منابع مشابه
Cross-view Graph Embedding
Recently, more and more approaches are emerging to solve the cross-view matching problem where reference samples and query samples are from different views. In this paper, inspired by Graph Embedding, we propose a unified framework for these cross-view methods called Cross-view Graph Embedding. The proposed framework can not only reformulate most traditional cross-view methods (e.g., CCA, PLS a...
متن کاملA New Linear Method for Euclidean Motion/Structure from Three Calibrated Affine Views
We introduce a unified framework for developing matching constraints of multiple affine views and rederive 2-view (affine epipolar geometry) and 3-view (affine image transfer) constraints within this framwork. We then describe a new linear method for Euclidean motion and structure from 3 calibrated affine images, based on insight into the particular structure of these multiple-view constraints....
متن کاملAdaptive Unsupervised Multi-view Feature Selection for Visual Concept Recognition
To reveal and leverage the correlated and complemental information between different views, a great amount of multi-view learning algorithms have been proposed in recent years. However, unsupervised feature selection in multiview learning is still a challenge due to lack of data labels that could be utilized to select the discriminative features. Moreover, most of the traditional feature select...
متن کاملDevelop AFramework for Selection of Intermediary in Marketing Channel
This study seeks to examine how a company can select the best intermediary for its Marketing channels with minimum of criteria and time. A theoretical framework is proposed based on the most important tasks of intermediary and the criteria to measure them. There are four basic tasks and thirty criteria in three independent levels. Subsequently, an exploratory case study in Iranian Food industry...
متن کاملGraph-Based Consistent Matching for Structure-from-Motion
Pairwise image matching of unordered image collections greatly affects the efficiency and accuracy of Structure-from-Motion (SfM). Insufficient match pairs may result in disconnected structures or incomplete components, while costly redundant pairs containing erroneous ones may lead to folded and superimposed structures. This paper presents a graph-based image matching method that tackles the i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1708.01125 شماره
صفحات -
تاریخ انتشار 2017